Senin, 29 Juni 2015

Distribusi Processing

Distribusi Processing


Definisi umum dari pemrosesan terdistribusi merupakan cara untuk mempercepat pengolahan data atau informasi dengan mendistribusikan pekerjaan atau intruksi ke banyak komputer yang telah dipilih untuk memberi kekuatan pemrosesan yang lebih cepat. Tujuan dari komputasi terdistribusi adalah menyatukan kemampuan dari sumber daya (sumber komputasi atau sumber informasi) yang terpisah secara fisik, ke dalam suatu sistem gabungan yang terkoordinasi dengan kapasitas yang jauh melebihi dari kapasitas individual komponen-komponennya. Tujuan lain yang ingin dicapai dalam komputasi terdistribusi adalah transparansi. Kenyataan bahwa sumber daya yang dipakai oleh pengguna sistem terdistribusi berada pada lokasi fisik yang terpisah, tidak perlu diketahui oleh pengguna tersebut. Transparansi ini memungkinkan pengguna sistem terdistribusi untuk melihat sumber daya yang terpisah tersebut seolah-olah sebagai satu sistem komputer tunggal, seperti yang biasa digunakannya. Dalam prosesnya setiap komputer berinteraksi satu sama lain untuk mencapai tujuan bersama.

Arsitektur Komputer Paralel
Arsitektur komputer  dapat didefinisikan dan dikategorikan sebagai ilmu dan sekaligusseni mengenai cara interkoneksi komponen-komponen perangkat keras untuk dapat menciptakan sebuah komputer yang memenuhi kebutuhan fungsional, kinerja, dan target biayanya. Dalam bidang teknik komputer, arsitektur komputer adalah konsep perencanaan dan struktur pengoperasian dasar dari suatu sistem komputer. Arsitektur komputer ini merupakan rencana cetak-biru dan deskripsi fungsional dari kebutuhan bagian perangkat keras yang didesain (kecepatan proses dan sistem interkoneksinya). Dalam hal ini, implementasi perencanaan dari masing–masing bagian akan lebih difokuskan terutama, mengenai bagaimana CPU akan bekerja, dan mengenai cara pengaksesan data dan alamat dari dan ke memori cache, RAM, ROM, cakram keras, dll).
 Di antara demikian banyak pemahaman tentang arsitektur, arsitektur dikenal juga sebagai suatu tradisi yang berkembang. Dari waktu ke waktu wajah arsitektur selalu mengalami perubahan. Hal-hal yang mempengaruhi perkembangan dan pengembangan arsitektur tidak hanya berupa keadaan eksternal, tetapi juga keadaan internal. Disini kita membahas mengenai evolusi arsitektur pada komputer. Arsitektur dari komputer sendiri merupakan suatu susunan atau rancangan dari komputer tersebut sehingga membentuk suatu kesatuan yang dinamakan komputer. Komputer sendiri berevolusi dengan cepat mulai dari generasi pertama hingga sekarang. Evolusi sendiri didasarkan pada fungsi atau kegunaanya dalam kehidupan. Evolusi pada komputer sendiri ada karena keinginan atau hal yang dibutuhkan manusia itu sendiri. Sekarang ini komputer sudah dapat melakaukan perintah yang sulit sekalipun tidak seperti dulu yang hanya bisa melakukan yang sederhana saja. Itulah yang dinamakan evolusi arsitektur yaitu perubahan bentuk juga fungsi dan kemampuannya.
B.     KLASIFIKASI ARSITEKTUR KOMPUTER
1.      Arsitektur Von Neumann
Arsitektur von Neumann (atau Mesin Von Neumann) adalah arsitektur yang diciptakan oleh John von Neumann (1903-1957). Arsitektur ini digunakan oleh hampir semua komputer saat ini. Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama: Unit Aritmatika dan Logis (ALU), unit kontrol, memori, dan alat masukan dan hasil (secara kolektif dinamakan I/O). Bagian ini dihubungkan oleh berkas kawat, “bus”.
Pada perkembangan komputer modern, setiap prosesor terdiri dari atas :
Arithmetic and Logic Unit  (ALU)
Arithmatic and Logic Unit atau Unit Aritmetika dan Logika berfungsi untuk melakukan semua perhitungan aritmatika (matematika) dan logika yang terjadi sesuai dengan instruksi program. ALU menjalankan operasi penambahan,  pengurangan, dan operasi-operasi sederhana lainnya pada input-inputnya dan memberikan hasilnya pada registeroutput.
Register.
Register merupakan alat penyimpanan kecil yang  mempunyai kecepatan akses cukup tinggi, yang  digunakan untuk menyimpan data dan instruksi yang  sedang diproses, sementara data dan instruksi lainnya yang menunggugiliran untukdiproses masihdisimpan yang menunggugiliran untukdiproses masihdisimpan di dalam memori utama. Setiap register dapat menyimpan satu bilangan hingga mencapai jumlah maksimum tertentu tergantung pada ukurannya.
Control Unit
Control Unit atau Unit Kontrol berfungsi untuk mengatur dan mengendalikan semua peralatan yang ada pada sistem komputer. Unit kendali akan mengatur kapan alat input  menerima data dan kapan data diolah serta kapan ditampilkan pada alat output. Unit ini juga mengartikan instruksi-instruksi dari program. Unit ini juga mengartikan instruksi-instruksi dari program komputer, membawa data dari alat input ke memori utama dan mengambil data dari memori utama untuk diolah. Bila ada instruksi untuk perhitungan aritmatika atau  perbandingan logika, maka unit kendali akan mengirim  instruksi tersebut ke ALU. Hasil dari pengolahan data  dibawa oleh unit kendali ke memori utama lagi untuk  disimpan, dan pada saatnya akan disajikan ke alat output.
Bus
Bus adalah sekelompok lintasan sinyal yang digunakan untuk menggerakkan bit-bit informasi dari satu tempat ke tempat lain, dikelompokkan menurut fungsinya Standar bus dari suatu sistem komputer adalah bus alamat (address bus), bus data (data bus) dan bus kontrol (control bus). Komputer menggunakan suatu bus atau saluran bus sebagaimana kendaraan bus yang mengangkut penumpang dari satu tempat ke tempat lain, maka bus komputer mengangkut data. Bus komputer menghubungkan CPU pada RAM dan periferal. Semua komputer menggunakan saluran busnya untuk maksud yang sama.
 2.      Arsitektur RISC
Pengertian RISC
RICS singkatan dari Reduced Instruction Set Computer. Merupakan bagian dari arsitektur mikroprosessor, berbentuk kecil dan berfungsi untuk negeset istruksi dalam komunikasi diantara arsitektur yang lainnya. Reduced Instruction Set Computing (RISC) atau “Komputasi set instruksi yang disederhanakan” pertama kali digagas oleh John Cocke, peneliti dari IBM di Yorktown, New York pada tahun 1974 saat ia membuktikan bahwa sekitar 20% instruksi pada sebuah prosesor ternyata menangani sekitar 80% dari keseluruhan kerjanya. Komputer pertama yang menggunakan konsep RISC ini adalah IBM PC/XT pada era 1980-an. Istilah RISC sendiri pertama kali dipopulerkan oleh David Patterson,pengajar pada University of California di Berkely.
RISC, yang jika diterjemahkan berarti “Komputasi Kumpulan Instruksi yang Disederhanakan”, merupakan sebuah arsitektur komputer atau arsitektur komputasi modern dengan instruksi-instruksi dan jenis eksekusi yang paling sederhana. Arsitektur ini digunakan pada komputer dengan kinerja tinggi, seperti komputer vektor.
Selain digunakan dalam komputer vektor, desain ini juga diimplementasikan pada prosesor komputer lain, seperti pada beberapa mikroprosesor Intel 960, Itanium (IA64) dari Intel Corporation, Alpha AXP dari DEC, R4x00 dari MIPS Corporation, PowerPC dan Arsitektur POWER dari International Business Machine. Selain itu, RISC juga umum dipakai pada Advanced RISC Machine (ARM) dan StrongARM (termasuk di antaranya adalah Intel XScale), SPARC dan UltraSPARC dari Sun Microsystems, serta PA-RISC dari Hewlett-Packard.
Karakteristik RISC
·         Siklus mesin ditentukan oleh waktu yang digunakan untuk mengambil dua buah operand dari register, melakukan operasi ALU, dan menyimpan hasil operasinya kedalam register, dengan demikian instruksi mesin RISC tidak boleh lebih kompleks dan harus dapat mengeksekusi secepat mikroinstruksi pada mesin-mesin CISC
·         Operasi berbentuk dari register-ke register yang hanya terdiri dari operasi load dan store yang mengakses memori . Fitur rancangan ini menyederhanakan set instruksi sehingga menyederhanakan pula unit control
·         Penggunaan mode pengalamatan sederhana, hampir sama dengan instruksi menggunakan pengalamatan register.
·         Penggunaan format-format instruksi sederhana, panjang instruksinya tetap dan disesuaikan dengan panjang word.

Karakteristik-Karakteristik Eksekusi Instruksi
Salah satu evolusi komputer yang besar adalah evolusi bahasa pemprograman. Bahasa pemprograman memungkinkan programmer dapat mengekspresikan algoritma lebih singkat, lebih memperhatikan rincian, dan mendukung penggunaan pemprograman terstruktur, tetapi ternyata muncul masalah lain yaitu semantic gap, yaitu perbedaan antara operasi-operasi yang disediakan oleh HLL dengan yang disediakan oleh arsitektur komputer, ini ditandai dengan ketidakefisienan eksekusi, program mesin yang berukuran besar,dan kompleksitas kompiler.
Untuk mengurangi kesenjangan ini para perancang menjawabnya dengan arsitektur. Fitur-fiturnya meliputi set-set instruksi yang banyak, lusinan mode pengalamatan, dan statemen –statemen HLL yang diimplementasikan pada perangkat keras.
Operasi
Beberapa penelitian telah menganalisis tingkah laku program HLL (High Level Language). Assignment Statement sangat menonjol yang menyatakan bahwa perpindahan sederhana merupakan satu hal yang penting. Hasil penelitian ini merupakan hal yang penting bagi perancang set instruksi mesin yang mengindikasikan jenis instruksi mana yang sering terjadi karena harus didukung optimal.
Operand
Penelitian Paterson telah memperhatikan [PATT82a] frekuensi dinamik terjadinya kelaskelas variabel. Hasil yang konsisten diantara program pascal dan C menunjukkan mayoritas referensi menunjuk ke variable scalar. Penelitian ini telah menguji tingkah laku dinamik program HLL yang tidak tergantung pada arsitektur tertentu. Penelitian [LUND77] menguji instruksi DEC-10 dan secara dinamik menemukan setiap instruksi rata-rata mereferensi 0,5 operand dalam memori dan rata-rata mereferensi 1,4 register. Tentu saja angka ini tergantung pada arsitektur dan kompiler namun sudah cukup menjelaskan frekuensipengaksesan operand sehingga menyatakan pentingnya sebuah arsitektur.
Procedure Calls
Dalam HLL procedure call dan return merupakan aspek penting karena merupakan operasi yang membutuhkan banyak waktu dalam program yang dikompalasi sehingga banyak berguna untuk memperhatikan cara implementasi opperasi ini secara efisien. Adapun aspeknya yang penting adalah jumlah parameter dan variabel yang berkaitan dengan prosedur dan kedalaman pensarangan (nesting).
 3.      Arsitektur CISC
Pengertian CISC
Complex instruction-set computing atau Complex Instruction-Set Computer (CISC) “Kumpulan instruksi komputasi kompleks”) adalah sebuah arsitektur dari set instruksi dimana setiap instruksi akan menjalankan beberapa operasi tingkat rendah, seperti pengambilan dari memory, operasi aritmetika, dan penyimpanan ke dalam memory, semuanya sekaligus hanya di dalam sebuah instruksi. Karakteristik CISC dapat dikatakan bertolak-belakang dengan RISC.
Sebelum proses RISC didesain untuk pertama kalinya, banyak arsitek komputer mencoba menjembatani celah semantik”, yaitu bagaimana cara untuk membuat set-set instruksi untuk mempermudah pemrograman level tinggi dengan menyediakan instruksi “level tinggi” seperti pemanggilan procedure, proses pengulangan dan mode-mode pengalamatan kompleks sehingga struktur data dan akses array dapat dikombinasikan dengan sebuah instruksi. Karakteristik CISC yg “sarat informasi” ini memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat.
Memang setelah itu banyak desain yang memberikan hasil yang lebih baik dengan biaya yang lebih rendah, dan juga mengakibatkan pemrograman level tinggi menjadi lebih sederhana, tetapi pada kenyataannya tidaklah selalu demikian. Contohnya, arsitektur kompleks yang didesain dengan kurang baik (yang menggunakan kode-kode mikro untuk mengakses fungsi-fungsi hardware), akan berada pada situasi di mana akan lebih mudah untuk meningkatkan performansi dengan tidak menggunakan instruksi yang kompleks (seperti instruksi pemanggilan procedure), tetapi dengan menggunakan urutan instruksi yang sederhana.
Istilah RISC dan CISC saat ini kurang dikenal, setelah melihat perkembangan lebih lanjut dari desain dan implementasi baik CISC dan CISC. Implementasi CISC paralel untuk pertama kalinya, seperti 486 dari Intel, AMD, Cyrix, dan IBM telah mendukung setiap instruksi yang digunakan oleh prosesor-prosesor sebelumnya, meskipun efisiensi tertingginya hanya saat digunakan pada subset x86 yang sederhana (mirip dengan set instruksi RISC, tetapi tanpa batasan penyimpanan/pengambilan data dari RISC). Prosesor-prosesor modern x86 juga telah menyandikan dan membagi lebih banyak lagi instruksi-instruksi kompleks menjadi beberapa “operasi-mikro” internal yang lebih kecil sehingga dapat instruksi-instruksi tersebut dapat dilakukan secara paralel, sehingga mencapai performansi tinggi pada subset instruksi yang lebih besar.
Karakteristik CISC
·         Sarat informasi memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat
·         Dimaksudkan untuk meminimumkan jumlah perintah yang diperlukan untuk mengerjakan pekerjaan yang diberikan. (Jumlah perintah sedikit tetapi rumit) Konsep CISC menjadikan mesin mudah untuk diprogram dalam bahasa rakitan

 4.      Arsitektur Harvard
Arsitektur Havard menggunakan memori terpisah untuk program dan data dengan alamat dan bus data yang berdiri sendiri. Karena dua perbedaan aliran data dan alamat, maka tidak  diperlukan multiplexing  alamat dan bus data. Arsitektur ini tidak hanya didukung dengan bus paralel untuk alamat dan data, tetapi juga menyediakanorganisasiinternal yang  berbeda sedemikian rupa instruksi dapat diambil dan dikodekan ketika dan data, tetapi juga menyediakan organisasi internal yang  berbeda sedemikian rupa instruksi dapaLebih lanjut lagi, bus data bisa saja memiliki ukuran yang berbeda  dari bus alamat. Hal ini memungkinkan pengoptimalan bus data dan bus alamat dalam pengeksekusian instruksi yang cepat.t diambil dan dikodekan ketika berbagai data sedang diambil dan dioperasikan. Sebagai contoh, mikrokontroler Intel keluarga MCS-51 menggunakan arsitektur Havard karena ada perbedaan kapasitas memori untuk program dan data, dan bus terpisah (internal) untuk alamat dan data.  Begitu juga dengan keluarga PIC dari Microchip yang menggunakan arsitektur Havard.
5.      Arsitektur Blue Gene
Blue Gene adalah sebuah arsitektur komputer yang dirancang untuk menciptakan beberapa superkomputer generasi berikut, yang dirancang untuk mencapai kecepatan operasi petaflop (1 peta = 10 pangkat 15), dan pada 2005 telah mencapai kecepatan lebih dari 100 teraflop (1 tera = 10 pangkat 12). Blue Gene merupakan proyek antara Departemen Energi Amerika Serikat (yang membiayai projek ini), industri (terutama IBM), dan kalangan akademi. Ada lima projek Blue Gene dalam pengembangan saat ini, di antaranya adalah Blue Gene/L, Blue Gene/C, dan Blue Gene/P.
Komputer pertama dalam seri Blue Gene. Blue Gene/L dikembangkan melalui sebuah “partnership” dengan Lawrence Livermore National Laboratory menghabiskan biaya AS$100 juta dan direncanakan dapat mencapai kecepatan ratusan TFLOPS, dengan kecepatan puncak teoritis 360 TFLOPS. Ini hampir sepuluh kali lebih cepat dari Earth Simulator, superkomputer tercepat di dunia sebelum Blue Gene. Pada Juni 2004, dua prototipe Blue Gene/L masuk dalam peringkat 500 besar superkomputer berada dalam posisi ke-4 dan ke-8.
Pada 29 September 2004 IBM mengumumkan bahwa sebuah prototipe Blue Gene/L di IBM Rochester (Minnesota) telah menyusul Earth Simulator NEC sebagai komputer tercepat di dunia, dengan kecepatan 36,01 TFLOPS, mengalahkan Earth Simulator yang memiliki kecepatan 35,86 TFLOPS. Mesin ini kemudian mencapai kecepatan 70,72.
Pada 24 Maret 2005, Departemen Energi AS mengumumkan bahwa Blue Gene/L memecahkan rekor komputer tercepat mencapai 135,5 TFLOPS. Hal ini dimungkinkan karena menambah jumlah rak menjadi 32 dengan setiap rak berisi 1.024 node komputasi. Ini masih merupakan setengah dari konfigurasi final yang direncanakan mencapai 65.536 node.
Pada 27 Oktober, 2005, Lawrence Livermore National Laboratory dan IBM mengumumkan bahwa Blue Gene/L sekali lagi telah menciptakan rekor dengan mengalahkan rekornya sendiri setelah mencapai kecepatan 280.6 TFLOPS.
C.    MODEL-MODEL KOMPUTASI ARSITEKTUR KOMPUTER
1.      SISD
Yang merupakan singkatan dari Single Instruction, Single Data adalah satu-satunya yang menggunakan arsitektur Von Neumann. Ini dikarenakan pada model ini hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 
  2.      SIMD
Yang merupakan singkatan dari Single Instruction, Multiple Data. SIMD menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU
3.      MISD
Yang merupakan singkatan dari Multiple Instruction, Single Data. MISD menggunakan banyak processor dengan setiap processor menggunakan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Untuk contoh, kita bisa menggunakan kasus yang sama pada contoh model SIMD namun cara penyelesaian yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.
4.      MIMD
Yang merupakan singkatan dari Multiple Instruction, Multiple Data. MIMD menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.
Thread Programming
Thread: sekumpulan instruksi (proses) yang dieksekusi secara independen

Multithreading: suatu kemampuan yang memungkinkan beberapa kumpulan instruksi (proses) dijalankan secara bersamaan (time slicing) dalam sebuah program

Multithreading bermanfaat untuk membuat proses yang interaktif, misalnya pada program permainan (game). Program tetap dapat menggerakkan beberapa objek sambil memberi kesempatan pengguna melakukan respon melalui mouse atau keyboard
Multithreading adalah suatu kemampuan yang memungkinkan beberapa kumpulan instruksi atau proses dapat dijalankan secara bersamaan dalam sebuah program. Satu kumpulan instruksi yang akan dieksekusi secara independen dinamakan thread Thread adalah alur kontrol dari suatu proses.atau sekumpulan perintah (instruksi) yang dapat dilaksanakan (dieksekusi) secara teratur dengan proses lainnya.Proses melakukan setiap langkah-langkah/intruksi yang berurutan, setiap intruksi untuk mengeksekusi baris kode/listing – listing program.Nah Karena langkah-langkah yang berurutan itu, setiap langkah membutuhkan jumlah waktu tertentu.

MESSAGING PASSING, OPEN MP
Jenis model ini menunjukkan karakteristik sebagai berikut:
  • Tugas pertukaran data melalui komunikasi dengan mengirim dan menerima pesan.
  • Transfer data biasanya memerlukan kerjasama operasi yang akan dilakukan oleh masing-masing proses.
(Open Multi-Processing) adalah sebuah antarmuka pemrograman aplikasi (API) yang mendukung multi processing shared memory pemrograman di C, C++ dan Fortran pada berbagai arsitektur, termasuk UNix dan Microsoft Windows platform. OpenMP Terdiri dari satu set perintah kompiler, perpustakaan rutinitas, dan variabel lingkungan yang mempengaruhi run-time. Banyak Aplikasi dibangun dengan model hibrida pemrograman paralel  dapat dijalankan pada komputer cluster dengan menggunakan OpenMP dan Message Passing Interface (MPI), atau lebih transparan dengan menggunakan ekstensi OpenMP non-shared memory systems.
PEMROGRAMAN CUDA (GRAPHICAL PROCESSING UNIT)
Sebagaimana telah kita ketahui bahwa Cuda adalah platform komputasi paralel dan model pemrograman yang diciptakan oleh perusahaan perangkat keras dunia yaitu NVIDIA. hal ini memungkinkan peningkatan dramatis dalam kinerja komputasi dengan memanfaatkan kekuatan dari Graphics Processing Unit(GPU).
Sebuah GPU (Graphical Processing Unit) pada awalnya adalah sebuah prosesor yang berfungsi khusus untuk melakukan rendering pada kartu grafik saja, tetapi seiring dengan semakin meningkatnya kebutuhan rendering, terutama untuk mendekati waktu proses yang realtime /sebagaimana kenyataan sesungguhnya, maka meningkat pula kemampuan prosesor grafik tersebut. akselerasi peningkatan teknologi GPU ini lebih cepat daripada peningkatan teknologi prosesor sesungguhnya (CPU), dan pada akhirnya GPU menjadi General Purpose, yang artinya tidak lagi hanya untuk melakukan rendering saja melainkan bisa untuk proses komputasi secara umum.
Penggunaan Multi GPU dapat mempercepat waktu proses dalam mengeksekusi program karena arsitekturnya yang natively parallel. Selain itu Peningkatan performa yang terjadi tidak hanya berdasarkan kecepatan hardware GPU saja, tetapi faktor yang lebih penting adalah cara membuat kode program yang benarbenar bisa efektif berjalan pada Multi GPU.
CUDA merupakan singkatan dari Compute Unified Device Architecture,didefinisikan sebagai sebuah arsitektur komputer parallel, dikembangkan oleh Nvidia. Teknologi ini dapat digunakan untuk menjalankan proses pengolahan gambar, video, rendering 3D, dan lain sebagainya. VGA – VGA dari Nvidia yang sudah menggunakan teknologi CUDA antara lain : Nvidia GeForce GTX 280, GTX 260,9800 GX2, 9800 GTX+,9800 GTX,9800 GT,9600 GSO, 9600 GT,9500 GT,9400 GT,9400 mGPU,9300 mGPU,8800 Ultra,8800 GTX,8800 GTS,8800 GT,8800 GS,8600 GTS,8600 GT,8500 GT,8400 GS, 8300 mGPU, 8200 mGPU, 8100 mGPU, dan seri sejenis untuk kelas mobile (VGA notebook).
Singkatnya, CUDA dapat memberikan proses dengan pendekatan bahasa C, sehingga programmer atau pengembang software dapat lebih cepat menyelesaikan perhitungan yang komplek. Bukan hanya aplikasi seperti teknologi ilmu pengetahuan yang spesifik. CUDA sekarang bisa dimanfaatkan untuk aplikasi multimedia.  Misalnya meng-edit film dan melakukan filter gambar. Sebagai contoh dengan aplikasi multimedia, sudah mengunakan teknologi CUDA. Software TMPGenc 4.0 misalnya membuat aplikasi editing dengan mengambil sebagian proces dari GPU dan CPU. VGA yang dapat memanfaatkan CUDA hanya versi 8000 atau lebih tinggi.
Keuntungan dengan CUDA sebenarnya tidak luput dari teknologi aplikasi yang ada. CUDA akan mempercepat proses aplikasi tertentu, tetapi tidak semua aplikasi yang ada akan lebih cepat walaupun sudah mengunakan fitur CUDA.



Rabu, 27 Mei 2015

Paralel Processing, Bioinformatika, serta Basid Data Sekuent Biologis dan Penyejajaran Sekuent

1.      Apa yang kalian ketahui tentang parallel processing?
Jawab :
Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan. Biasanya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak.


2.      Jelaskan hubungan parallel dengan processing!
Jawab :
Peningkatan kinerja atau proses komputasi semakin diterapkan, dan salah satu caranya adalah dengan meningkatkan kecepatan perangkat keras. Dimana komponen utama dalam perangkat keras komputer adalah processor. Sedangkan parallel processing adalah penggunaan beberapa processor (multiprocessor atau arsitektur komputer dengan banyak processor) agar kinerja computer semakin cepat.


3.      Apa yang kalian ketahui tentang bioinformatika?
Jawab :
Bioinformatika kajian ilmu yang memadukan disiplin biologi molekul, matematika dan teknik informasi (TI). Ilmu ini didefinisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi molekul. Pada saat ini, Bioinformatika ini mempunyai peranan yang sangat penting, diantaranya adalah untuk manajemen data-data biologi molekul, terutama sekuen DNA dan informasi genetika.


4.      Apa yang kalian ketahui tentang sejarah bioinformatika penerapan utama bioinformatika?
Jawab :
Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan computer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika(seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an. Kemajuan teknik biologi molecular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat(sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory , Laboratorium Biologi Molekular Eropa).Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika. Basis data sekuens biologis dapat berupa basis data primer untuk menyimpan sekuens primer asam nukleat maupun protein, basis data sekunder untuk menyimpan motif sekuens protein, dan basis data struktur untuk menyimpan data struktur protein maupun asam nukleat. Basis data utama untuk asam nukleat adalah GenBank (Amerika Serikat), EMBL (Eropa), dan DDBJ (Jepang). Ketiga basis data tersebut bekerjasama dan bertukar data secara harian untuk menjaga keleluasaan cakupan masing-masing basis data. Sumber utama data sekuens asam nukleat adalah submisi langsung dari periset individual, proyek sekuensing genom, dan pendaftaran paten. Selain berisi sekuens asam nukleat, entri dalam basis data sekuens asam nukleat umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan pustaka yang berkaitan dengan sekuens asam nukleat tersebut.Contoh beberapa basis data penting yang menyimpan sekuens primer adalah PIR (Protein Information Resource, Amerika Serikat), Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga basis data tersebut telah digabungkan dalam UniProt yang didanai terutama oleh Amerika Serikat. Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang umumnya berisi penjelasan mengenai fungsi protein tersebut.BLAST (Basic Local Alignment Search Tool) merupakan perkakas bioinformatika yang berkaitan erat dengan penggunaan basis data sekuens biologis. Penelusuran BLAST pada basis data sekuens memungkinkan ilmuwan untuk mencari sekuens asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasil sekuensing maupun untuk memeriksa fungsi gen hasil sekuensing. Algoritma yang mendasari kerja BLAST adalah penyejajaran sekuens.PDB (Protein Data Bank) adalah basis data tunggal yang menyimpan model struktural 3D protein dan asam nukleat hasil penentuan eksperimental dengan kristalografi sinar X, spektroskopi NMR dan mikroskopi elektron. PDB menyimpan data struktur sebagai koordinat 3D yang menggambarkan posisi atom-atom dalam protein maupun asam nukleat.


5.      Bagaimana trend bioinformatika di dunia?
Jawab :
Ledakan data/informasi biologi itu yang mendorong lahirnya Bioinformatika. Karena Bioinformatika adalah bidang yang relatif baru, masih banyak kesalahpahaman mengenai definisinya. Komputer sudah lama digunakan untuk menganalisa data biologi, misalnya terhadap data-data kristalografi sinar X dan NMR (Nuclear Magnetic Resonance) dalam melakukan penghitungan transformasi Fourier, dsb. Bidang ini disebut sebagai Biologi Komputasi. Bioinformatika muncul atas desakan kebutuhan untuk mengumpulkan, menyimpan dan menganalisa data-data biologis dari database DNA, RNA maupun protein tadi. Untuk mewadahinya beberapa jurnal baru bermunculan (misalnya Applied Bioinformatics), atau berubah nama seperti Computer Applications in the Biosciences (CABIOS) menjadi BIOInformatic yang menjadi official journal dari International Society for Computational Biology (ICSB) (nama himpunan tidak ikut berubah). Beberapa topik utama dalam Bioinformatika dijelaskan di bawah ini.

Keberadaan database adalah syarat utama dalam analisa Bioinformatika. Database informasi dasar telah tersedia saat ini. Untuk database DNA yang utama adalah GenBank di AS. Sementara itu bagi protein, databasenya dapat ditemukan di Swiss-Prot (Swiss) untuk sekuen asam aminonya dan di Protein Data Bank (PDB) (AS) untuk struktur 3D-nya. Data yang berada dalam database itu hanya kumpulan/arsip data yang biasanya dikoleksi secara sukarela oleh para peneliti, namun saat ini banyak jurnal atau lembaga pemberi dana penelitian mewajibkan penyimpanan dalam database. Trend yang ada dalam pembuatan database saat ini adalah isinya yang makin spesialis. Misalnya untuk protein struktur, ada SCOP dan CATH yang mengklasifikasikan protein berdasarkan struktur 3D-nya, selain itu ada pula PROSITE, Blocks, dll yang berdasar pada motif struktur sekunder protein.


6.      Sebutkan basis data sekuent biologis dan penyejajaran sekuent!
Jawab :
Basis data utama untuk sekuens asam nukleat saat ini adalah GenBank (Amerika Serikat), EMBL (Eropa), dan DDBJ(Inggris) (DNA Data Bank of Japan, Jepang). Ketiga basis data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing basis data. Sumber utama data sekuens asam nukleat adalah submisi langsung dari periset individual, proyek sekuensing genom, dan pendaftaran paten. Selain berisi sekuens asam nukleat, entri dalam basis data sekuens asam nukleat umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan pustaka yang berkaitan dengan sekuens asam nukleat tersebut.

Sementara itu, contoh beberapa basis data penting yang menyimpan sekuens primer protein adalah PIR (Protein Information Resource, Amerika Serikat), Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga basis data tersebut telah digabungkan dalam UniProt (yang didanai terutama oleh Amerika Serikat). Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang umumnya berisi penjelasan mengenai fungsi protein tersebut.

BLAST (Basic Local Alignment Search Tool) merupakan perkakas bioinformatika yang berkaitan erat dengan penggunaan basis data sekuens biologis. Penelusuran BLAST (BLAST search) pada basis data sekuens memungkinkan ilmuwan untuk mencari sekuens asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasil sekuensing maupun untuk memeriksa fungsi gen hasil sekuensing. Algoritma yang mendasari kerja BLAST adalah penyejajaran sekuens.


PDB (Protein Data Bank, Bank Data Protein) adalah basis data tunggal yang menyimpan model struktural tiga dimensi protein dan asam nukleat hasil penentuan eksperimental (dengan kristalografi sinar-X, spektroskopi NMR dan mikroskopi elektron). PDB menyimpan data struktur sebagai koordinat tiga dimensi yang menggambarkan posisi atom-atom dalam protein ataupun asam nukleat.



Source :
http://id.shvoong.com/internet-and-technologies/universities-research-institutions/2159327-parallel-processing/#ixzz1qmtgdvwh
http://coretanmuvi.blogspot.com/2012/03/paralel-processing.html
http://rzbeuty.blogspot.com/2012/03/komputasi-modern-parallel-processing.html
http://bagusonthespot.blogspot.com/2012/04/parallel-processing.html
http://andretobb.wordpress.com/
http://ghani.gxrg.org/2011/04/01/kinerja-komputasi-dengan-parallel-processing/
http://vanish73.wordpress.com/2010/02/18/komputasi/
http://hikarunamie.wordpress.com/2011/06/03/penjelasan-singkat-komputasi-modern/

Kamis, 30 April 2015

Quantum Computing

Komputasi kuantum adalah bidang studi difokuskan pada teknologi komputer berkembang berdasarkan prinsip-prinsip teori kuantum , yang menjelaskan sifat dan perilaku energi dan materi pada kuantum (atom dan subatom) tingkat. Pengembangan komputer kuantum , jika praktis, akan menandai lompatan maju dalam kemampuan komputasi jauh lebih besar daripada yang dari sempoa ke modern superkomputer , dengan keuntungan kinerja di alam miliar kali lipat dan seterusnya.
Komputer kuantum, mengikuti hukum fisika kuantum, akan memperoleh kekuatan pengolahan yang besar melalui kemampuan untuk berada di beberapa negara, dan untuk melakukan tugas-tugas menggunakan semua kemungkinan permutasi secara bersamaa. Kini pusat penelitian di komputasi kuantum termasuk MIT, IBM, Oxford University, dan Los Alamos National Laboratory.

Entanglement
Entanglement merupakan keadaan dimana dua atom yang berbeda berhubungan sedemikian hingga satu atom mewarisi sifat atom pasangannya. “Entanglement adalah esensi komputasi kuantum karena ini adalah jalinan kualitas yang berhubungan dengan lebih banyak informasi dalam bit kuantum dibanding dengan bit komputing klasik,” demikian Andrew Berkley, salah satu peneliti.
Para ahli fisika dari University of Maryland telah satu langkah lebih dekat ke komputer kuantum dengan mendemonstrasikan eksistensi entanglement antara dua gurdi kuantum, masing-masing diciptakan dengan tipe sirkuit padat yang dikenal sebagai persimpangan Josephson. Temuan terbaru ini mendekatkan jalan menuju komputer kuantum dan mengindikasikan bahwa persimpangan Josephson pada akhirnya dapat digunakan untuk membangun komputer supercanggih.

Pengoperasian Data Qubit
Proses komputasi dilakukan pada partikel ukuran nano yang memiliki sifat mekanika quantum, maka satuan unit informasi pada Komputer Quantum disebut quantum bit, atau qubit. Berbeda dengan bit biasa, nilai sebuah qubit bisa 0, 1, atau superposisi dari keduanya. State dimana qubit diukur adalah sebagai vektor atau bilangan kompleks. Sesuai tradisi dengan quantum states lain, digunakan notasi bra-ket untuk merepresentasikannya.
Pure qubit state adalah superposisi liner dari kedua state tersebut. Lebih jelasnya, sebuah pure qubit state dapat direpresentasikan oleh kombinasi linear dari state|0> dan state |1> : Dengan Î± dan Î² adalah amplitudo probabilitas yan dapat berupa angka kompleks. State space dari sebuah qubit secara geometri dapat direpresentasikan Bloch sphere
Bloch sphere adalah ruang 2 dimensi yang merupakan geometri untuk permukaan bola. Dibandingkan bit konvensional yang hanya dapat beradai di salah satu kutub, Qubit dapat berada dimana saja dalam permukaan bola. Untuk penerapan fisiknya, semua sistem 2 level, selama ukurannya cukup kecil untuk hukum mekanika quantum berlaku. Berbagai jenis implementasi fisik telah dikemukakan, contohnya antara lain: polarisasi cahaya, spin elektron, muatan listrik, dll.
Superposisi quantum adalah inti perbedaan antara qubit dengan bit biasa. Dalam keadaan superposisi, sebuah qubit akan bernilai |0> dan |1> pada saat bersamaan. Menurut interpretasi Copenhagen, bila dilakukan pengukuran terhadap qubit, maka hanya akan muncul satu state saja. State lainnya “kolaps” dalam arti hancur dan tidak mungkin diambil kembali.
Pemanfaatan sifat superposisi qubit ini adalah Paralellisme Quantum. Paralelisme Quantum muncul dari kemampuan quantum register untuk menyimpan superposisi dari base state. Maka setiap operasi pada register berjalan pada semua kemungkinan dari superposisi secara simultan. Karena jumlah state yang mungkin adalah 2n, dengn n adalah jumlah qubit pada quantum register, kita dapat melakukan pada komputer quantum satu kali operasi yang membutuh kan waktu eksponensial pada komputer konvensional. Kelemahan dari metode ini adalah, semakin besar base state yang bersuperposisi, semakin kecil kemungkinan hasil pengukuran dari nilai hasil pengukuran tersebut benar. Kelemahan ini membuat pararellisme quantum tidak berguna bila operasi dilakukan pada nilai yang spesifik. Namun kelemahan ini tidak begitu berpengaruh pada fungsi yang memperhitungkan nilai dari semua input, bukan hanya satu. Sebagaimana ditunjukkan pada Algoritma Shor.

Quantum Gate
Dalam komputasi kuantum dan khusus kuantum sirkuit model komputasi, gerbang kuantum (atau Gerbang logika kuantum) adalah rangkaian dasar kuantum yang beroperasi di sejumlah kecil qubits. Mereka adalah blok bangunan dari kuantum sirkuit, seperti gerbang logik klasik sirkuit digital konvensional.
Tidak seperti logika klasik pintu gerbang pada umumnya, logika kuantum bersifat reversibel. Namun, komputasi klasik hanya dapat dilakukan dengan menggunakan gerbang reversibel. Sebagai contoh, gerbang Toffoli reversibel dapat melaksanakan semua fungsi Boolean. Gerbang ini memiliki penyetaraan kuantum secara langsung, menampilkan bahwa sirkuit kuantum dapat melakukan semua operasi yang dilakukan oleh sirkuit klasik.
Gerbang logik kuantum yang diwakili oleh kesatuan matriks. Gerbang kuantum yang paling umum beroperasi pada ruang dari satu atau dua qubits, seperti Gerbang logika klasik umum beroperasi pada satu atau dua bit. Ini berarti bahwa sebagai matriks, gerbang kuantum dapat dijelaskan oleh 2 × 2 atau 4 × 4 kesatuan matriks.

Algoritma Shor
Algoritma Shor merupakan sebuah metode yang dikembangkan tahun 1994 oleh ilmuwan AT&T  Peter Shor untuk menggunakan komputer kuantum yang futuristis untuk menemukan faktor-faktor dari sebuah bilangan. Bilangan-bilangan yang diperkalikan satu dengan yang lain  untuk  memperoleh  bilangan  asli.  Saat ini, pemfaktoran (factoring) sebuah bilangan besar masih terlalu sulit bagi komputer konvensional meskipun begitu mudah untuk  diverifikasi. Itulah sebabnya pemfaktoran bilangan besar ini banyak digunakan dalam metode kriptografi untuk melindungi data.




Senin, 30 Maret 2015

Komputasi Modern

Pengertian
   Komputasi modern bisa disebut sebuah konsep sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory, memory disini bisa juga dari memory komputer.

Sejarah
    Permulaan komputasi modern dimulai pada saat tahun 1926 oleh ilmuan yang berasal dari hungaria yang bernama John Von Neumann. Von Neumann seorang ilmuan yang belajar dari Berlin dan Zurich dan mendapatkan diploma pada bidang teknik kimia pada tahun 1926. Pada tahun yang sama dia mendapatkan gelar doktor pada bidang matematika dari Universitas Budapest. Berkat keahlian dan kepiawaiannya Von Neumann dalam bidang teori game yang melahirkan konsep seluler automata, teknologi bom atom, dan komputasi modern yang kemudian melahirkan komputer. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya. Setelah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton serta menjadi salah satu pendiri Institute for Advanced Studies. Dipicu ketertarikannya pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Sebagai konsultan pada pengembangan ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori. berdasarkan beberapa definisi di atas, maka komputasi modern dapat diartikan sebagai suatu pemecahan masalah berdasarkan suatu inputan dengan menggunakan algoritma dimana penerapannya menggunakan berbagai teknologi yang telah berkembang seperti komputer.

Jenis-Jenis Komputasi Modern
Mobile computing
    Mobile computing atau komputasi bergerak memiliki beberapa penjelasan, salah satunya komputasi bergerak merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel dan mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel. Dan berdasarkan penjelasan tersebut, untuk kemajuan teknologi ke arah yang lebih dinamis membutuhkan perubahan dari sisi manusia maupun alat. Dan dapat dilihat contoh dari perangkat komputasi bergerak seperti GPS, juga tipe dari komputasi bergerak seperti smart phone, dan lain sebagainya.

Grid computing
    Komputasi grid menggunakan komputer yang terpisah oleh geografis, didistibusikan dan terhubung oleh jaringan untuk menyelasaikan masalah komputasi skala besar. Ada beberapa daftar yang dapat dugunakan untuk mengenali sistem komputasi grid, adalah :
  • Sistem untuk koordinat sumber daya komputasi tidak dibawah kendali pusat.
  • Sistem menggunakan standard dan protocol yang terbuka.
  • Sistem mencoba mencapai kualitas pelayanan yang canggih, yang lebih baik diatas kualitas komponen individu pelayanan komputasi grid.
Cloud computing
    Komputasi cloud merupakan gaya komputasi yang terukur dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet. Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet. Adapun perbedaan antara komputasi mobile, komputasi grid dan komputasi cloud, dapat dilihat penjelasannya dibawah ini :
  • Komputasi mobile menggunakan teknologi komputer yang bekerja seperti handphone, sedangkan komputasi grid dan cloud menggunakan komputer.
  • Biaya untuk tenaga komputasi mobile lebih mahal dibandingkan dengan komputasi grid dan cloud.
  • Komputasi mobile tidak membutuhkan tempat dan mudah dibawa kemana-mana, sedangkan grid dan cloud membutuhkan tempat yang khusus.
  • Untuk komputasi mobile proses tergantung si pengguna, komputasi grid proses tergantung pengguna mendapatkan server atau tidak, dan komputasi cloud prosesnya membutuhkan jaringan internet sebagai penghubungnya.

Contoh Komputasi Modern
Contoh Mobile Computing :
Setelah kita mengetahui mengapa kita membutuhkan mobile computing, kita bisa menyebutkan mobile applications yang sudah ada saat ini. Diantaranya adalah :

- Kendaraan(untuk pemantauan dan koordinasi, GPS)
- Peralatan Emergensi(akses kedunia luar)
- Akses web dalam keadaan bergerak
- Location aware services
- Information services
- Disconnected operations (mobile agents)
- Entertaintment(network game groups)

Jenis Mobile Computing :
- Laptop
- Wearable computer
- PDA
- Smart phone
- Carputer
- UMPC

Contoh grid computing:
- Scientific Simulation: Komputasi grid diimplementasikan di bidang fisika, kimia, dan biologi untuk melakukan simulasi terhadap proses yang kompleks.
- Medical Images: Penggunaan data grid dan komputasi grid untuk menyimpan medical-image.
Contohnya adalah eDiaMoND project
- Computer-Aided Drug Discovery (CADD): Komputasi grid digunakan untuk membantu penemuan obat. Salah satu contohnya adalah: Molecular Modeling Laboratory (MML) di University of North Carolina (UNC)
- Big Science: Data grid dan komputasi grid digunakan untuk membantu proyek laboratorium yang disponsorioleh pemerintah Contohnya terdapat di DEISA
- e-Learning: Komputasi grid membantu membangun infrastruktur untuk memenuhi kebutuhan dalam pertukaran informasi dibidang pendidikan. Contohnya adalah AccessGrid
- Visualization: Komputasi grid digunakan untuk membantu proses visualisasi perhitungan yang rumit.
- Microprocessor design: komputasi grid membantu untuk mengurangi microprocessor design cycle dan memudahkan design center untuk membagikan resource lebih efisien. Contohnya ada diMicroprocessor Design Group at IBM Austin

Contoh cloud computing:
- Email
- Data storage online
- Are you a collaborator?
Penkolaborasian data sering kali diperlukan. Karena data yang ingin kita simpan bermacam-macam jenisnya dan fungsinya. ada banayk tools yang dapat digunakan. Contohnya adalah Spicebird, Mikogo, Stixy and Vyew t 
- Bekerja pada virtual office
Sering kita memerlukan office untuk memproses data-data. Saat ini kita dapat menggunakan office tidak hanya yang sudah terinstall namun kita juga dapat menggunakan office yang disediakan secara online. Contohnya antara lain Ajax13, ThinkFree and Microsoft’s Office Live. 
- Kekuatan ekstra processing
Bila membutuhkan kekuatan untuk memproses secara cepat tanpa perlu membeli perangkat tambahan maka salah satu solusinya adalah Amazon’s EC2 virtual computing 
ini juga dapat diatur sesuai dengan kebutuhan individu masing -masing orang. contoh yang lain adalah AbiCloud, Elastichosts and NASA’s Nebula platform.

Manfaat Komputasi Modern dalam Masyarakat
Dibawah ini merupakan Manfaat komputer dalam kehidupan sehari- hari sangat banyak dan sangat membantu, mempermudah , mempecepat pekerjaan-pekerjaan manusia diantaranya adalah :

1.     Bidang Pendidikan
    Dengan adanya komputer mempermudah bagi pegawai administrasi sekolah untuk membuat kurikulum pengajaran , jadwal pelajaran sekolah, membuat daftar nama siswa , membuat daftar nilai siswa , membuat absen siswa , membuat perhitungan gaji pegawai dan membuat perencanaan pengajaran bagi guru-guru sekolah.
Mengakses Informasi Pendidikan lewat Internet. Seiring perkembangan jaman Internet telah merambah sekolah-sekolah setingkat kecamatan,sehingga akses informasipun semakin mudah diperoleh untuk kemajuan pendidikan tiap-tiap sekolah.

2.     Bidang Kesehatan
     Mempermudah Dokter dan Perawat dalam memonitor kesehatan pasien monitor detak jantung pasien lewat monitor komputer, aliran darah , memeriksa organ dalam pasien dengan sinar X. Sebagai contoh saat perawatan Almarhum Mantan Presiden Soeharto di Rumah Sakit Pertamina Jakarta, tahun 2008. Dengan teknologi modern bisa memonitor, bahkan menggantikan fungsi organ dalam seperti Jantung, Paru-paru dan Ginjal. Itu merupakan teknologi kesehatan yang digabungkan dengan teknologi Informasi dan Komputer.

Bidang Transportasi
     Dengan komputer semua jadwal dan jalur penerbangan yang transit dibandara bisa di program dan dijadwalkan dengan komputer. Untuk menerbangkan sendiri pesawat dilengkapi dengan peralatan komputer. Bahkan setelah mencapai ketinggian tertentu pesawat bisa di terbangkan otomatis dengan pilot otomatis yang sudah diprogram di dalam kmputer.
Dengan komputer, narigasi kapal laut bisa ditentukan koordinat dan arah gerak kapal. Demikian juga penjualan tiket di Bandara , Stasiun , Dan Terminal Bus di layani dengan cepat menggunakan komputer.

Bidang Jasa Pengiriman Barang
    Kantor Pos bisa mengirimkan dokumen pengiriman barang lebih cepat dan akurat.Dengan adanya komputer dan internet orang tidak lagi menunggu berhari-hari menerima surat, cukup lewat email saja lebih cepat dalam sekejap , jadi dunia menjadi semakin sempit dalam arti bisa diakses sedemikian cepatnya.

Bidang industri Otomotif
     Mobil-mobil di buat dari kerangka body, mesin, peralatan elektronik di pabrik dengan bantuan robot yang dikendalikan oleh komputer dengan leih akurat. Dengan bantuan komputer pabrik-pabrik otomotif bisa memproduksi mobil dalam jumlah ratusan perbulan, yang tidak mungkin dikerjakan secara manual dengan tenaga manusia.

Bidang Jasa Konstruksi
    Dengan komputer para Insiyur dan Arsitek mendesain gambar konstruksi dengan pemodelan dan perhitungan yang akurat, cepat dan tepat. Gambar kontruksi didesain menggunakan program CAD, sedangkan untuk perhitungan analisis dan penganalisa kekuatan menggunakan program SAP2000 atau STAD III yang dioperasikan dengan bantuan komputer.

Bidang Jasa Percetakan
    Percetakan koran, majalah , buku-buku, semua dikerjakan dengan mesin yang di operasikan oleh komputer sehingga dalam waktu singkat bisa mencetak buku atau majalah atau koran dalam jumlah ratusan bahkan jutaan exemplar, bisa menghemat waktu dan biaya, seandainya dikerjakan dengan manual oleh manusia, butuh berapa ribu orang untuk mengetik di kertas koran dan perlu berapa lama untuk menyelesaikan, keburu berita menjadi basi dantidak up-to date lagi.

Bidang Industri Perfilman
    Semua efek-efek di dunia akting , animasi, dan penyotingan adegan film semua di rekam dengan perangkat elektronik yang dihubungkan dengan komputer. Animasinya juga di kembangkan mempergunakan animasi yang dibuat dengan aplikasi komputer. Sebagai contoh film-film 
Hollywood
berjudul TITANIC itu sebenarnya tambahan animasi untuk menggambarkan kapal raksasa yang pecah dan tenggelam, sehingga tampak menjadi seolah-olah mirip dengan kejadian nyata.

 Bidang Industri Rekaman
    Bahwa untuk menghasilkan suara yang bagus perlu pengaturan perekam dan modifikasi suara dengan media komputer, serta mencetak lagu-lagunyapun di bantu dengan system komputer. Untuk mencetak album kedalam VCD atau DVD perlu bantuan pogram komputer untuk memproses pembuningan atau pembakaran CD sehingga bisa merekam suara dengan kualitas sangat tinggi.

Bidang Pertahanan dan Keamanan
    Negara maju seperti Amerika telah dilengkapi dengan peralatan satelit yang dikendalikan dari Bumi, untuk memantau serta memetakan keadaan dipermukaan Bumi, pada Perang dunia II dan yang terakhir dengan Irak , Amerika menggunakan Jaringan Inteligen yang dilengkapi dengan Teknologi komputer dan Informasi modern sehingga bisa mengalahkan lawan-lawanya.

Bidang Olah Raga
    Pertandingan sepak bola piala dunia di tayangkan oleh satelite yang di hubungkan dengan pesawat penerima di bumi kemudian dipancarkan ke seluruh satelit pemancar TV di belahan bumi, sehingga acara olah raga sedunia itu bisa dinikmati oleh semua orang.

    Kesimpulannya bahwa kehidupan komputerisasi sangat membantu manusia dalam menyelesaikan pekerjaannya dan semakin bertambahnya zaman teknologi komputer pun akan menjadi sangat canggih dan maju pesat karena pola pikir manusia yang terus maju dan berkembang.

Source :
http://tiattack.blogspot.com/2013/04/pengantar-komputasi-modern-komputer-dan.html

http://fensyaaprialdi.blogspot.com/2013/05/jenis-komputasi-modern-dan-contoh.html

Sabtu, 11 Mei 2013

Institusi Pengelola Internet / WEB


KOMPONEN-KOMPONEN DALAM PENGELOLA WEB INSTITUSI

        A. Domain Name

Domain Name atau biasa disebut Nama Domain adalah alamat permanen situs di dunia internet yang digunakan untuk mengidentifikasi sebuah situs. Istilah umum yang digunakan adalah url.

1.       Generic Domains
Merupakan Domain Name Yang Berakhiran Dengan .Com .Net .Org .Edu .Mil Atau .Gov. Jenis Domain Ini Sering Juga Disebut Top Level Domain Dan Domain Ini Tidak Berafiliasi Berdasarkan Negara, Sehingga Siapapun Dapat Mendaftar.

Pengelola Nama Domain Internet Indonesia (disingkat PANDI) adalah sebuah badan hukum yang memiliki wewenang untuk mengatur pengelolaan domain .id. PANDI dibentuk oleh perwakilan dari komunitas teknologi informasi Indonesia dan mendapatkan persetujuan sebagai penerima mandat dari pengelola domain tingkat tinggi (dunia) ICANN (internet for Assigned Name and Number).PANDI dibentuk tanggal 29 Desember 2006 di Jakarta melalui dukungan Direktorat Jenderal Aplikasi Telematika, Departemen Komunikasi dan Informatika.

.Com : Merupakan Top Level Domain Yang Ditujukan Untuk Kebutuhan "Commercial".
.Edu : Merupakan Domain Yang Ditujukan Untuk Kebutuhan Dunia Pendidikan (Education)
.Gov : Merupakan Domain Untuk Pemerintahan (Government)
.Mil : Merupakan Domain Untuk Kebutuhan Angkatan Bersenjata (Military) .Org : Domain Untuk Organisasi Atau Lembaga Non Profit (Organization).

2.        Country-Specific Domains
Domain yang berkaitan dengan dua huruf ekstensi disebut Second Level Domain, Seperti .

.Co.Id : Untuk Badan Usaha Yang Mempunyai Badan Hukum Sah
.Ac.Id : Untuk Lembaga Pendidikan
.Go.Id : Khusus Untuk Lembaga Pemerintahan Republik Indonesia
.Mil.Id : Khusus Untuk Lembaga Militer Republik Indonesia
.Or.Id : Untuk Segala Macam Organisasi Yand Tidak Termasuk Dalam Kategori "Ac.Id","Co.Id","Go.Id","Mil.Id" Dan Lain
.War.Net.Id : Untuk Industri Warung Internet Di Indonesia
.Sch.Id : Khusus Untuk Lembaga Pendidikan Yang Menyelenggarakan Pendidikan Seperti Sd, Smp Dan Atau Smu
.Web.Id : Ditujukan Bagi Badan Usaha, Organisasi Ataupun Perseorangan Yang Melakukan Kegiatannya Di Worl Wide Web.

Nama Domain Dari Tiap-Tiap Situs Di Seluruh Dunia Tidak Ada Yang Sama Sehingga Tidak Ada Satupun Situs Yang Akan Dijumpai Tertukar Nama Atau Tertukar Halaman Situsnya. Untuk Memperoleh Nama Dilakukan Penyewaan Domain, Biasanya Dalam Jangka Tertentu(Tahunan).

         B. Hosting
Hosting Dapat Diartikan Sebagai Ruangan Yang Terdapat Dalam Harddisk Tempat Menyimpan Berbagai Data, File-File, Gambar Dan Lain Sebagainya Yang Akan Ditampilkan Di Situs. Besarnya Data Yang Bisa Dimasukkan Tergantung Dari Besarnya Hosting Yang Disewa/Dipunyai, Semakin Besar Hosting Semakin Besar Pula Data Yang Dapat Dimasukkan Dan Ditampilkan Dalam Situs.

Hosting Juga Diperoleh Dengan Menyewa. Besarnya Hosting Ditentukan Ruangan Harddisk Dengan Ukuran Mb(Mega Byte) Atau Gb(Giga Byte). Lama Penyewaan Hosting Rata-Rata Dihitung Per Tahun. Penyewaan Hosting Dilakukan Dari Perusahaan-Perusahaan Penyewa Web Hosting Yang Banyak Dijumpai Baik Di Indonesia Maupun Luar Negri.

         C. Bahasa Program
Adalah Bahasa Yang Digunakan Untuk Menerjemahkan Setiap Perintah Dalam Situs Yang Pada Saat Diakses. Jenis Scripts Sangat Menentukan Statis, Dinamis Atau Interaktifnya Sebuah Situs. Semakin Banyak Ragam Scripts Yang Digunakan Maka Akan Terlihat Situs Semakin Dinamis, Dan Interaktif Serta Terlihat Bagus. Bagusnya Situs Dapat Terlihat Dengan Tanggapan Pengunjung Serta Frekwensi Kunjungan.

Beragam Scripts Saat Ini Telah Hadir Untuk Mendukung Kualitas Situs. Jenis Jenis Scripts Yang Banyak Dipakai Para Designer Antara Lain Html, Asp, Php, Jsp, Java Scripts, Java Applets Dsb. Bahasa Dasar Yang Dipakai Setiap Situs Adalah Html Sedangkan Asp Dan Lainnya Merupakan Bahasa Pendukung Yang Bertindak Sebagai Pengatur Dinamis, Dan Interaktifnya Situs.

Scripts Asp, Php, Jsp Atau Lainnya Bisa Dibuat Sendiri, Bisa Juga Dibeli Dari Para Penjual Scripts Yang Biasanya Berada Di Luar Negri. Harga Scripts Rata-Rata Sangat Mahal Karena Sulitnya Membuat, Biasanya mencapai Puluhan Juta. Scripts Ini Biasanya Digunakan Untuk Membangun Portal Berita, Artikel, Forum Diskusi, Buku Tamu, Anggota Organisasi, Email, Mailing List Dan Lain Sebagainya Yang Memerlukan Update Setiap Saat.

         D. Design Web
Setelah Melakukan Penyewaan Domain Dan Hosting Serta Penguasaan Scripts, Unsur Situs Yang Paling Penting Dan Utama Adalah Design. Design Web Sangat Menentukan Kualitas Dan Keindahan Situs. Design Sangat Berpengaruh Kepada Penilaian Pengunjung Akan Bagus Tidaknya Sebuah Web Site.

Untuk Membuat Situs Biasanya Dapat Dilakukan Sendiri Atau Menyewa Jasa Web Designer. Saat Ini Sangat Banyak Jasa Web Designer, Terutama Di Kota-Kota Besar. Perlu Diketahui Bahwa Kualitas Situs Sangat Ditentukan Oleh Kualitas Designer. Semakin Banyak Penguasaan Web Designer Tentang Beragam Program/Software Pendukung Pembuatan Situs Maka Akan Dihasilkan Situs Yang Semakin Berkualitas, Demikian Pula Sebaliknya. Jasa Web Designer Ini Yang Umumnya Memerlukan Biaya Yang Tertinggi Dari Seluruh Biaya Pembangunan Situs Dan Semuanya Itu Tergantung Kualitas Designer.

         E. HYPERTEXT TRANSFER PROTOKOL (HTTP)
Hypertext Transfer Protocol (HTTP), yang mana adalah suatu protokol yang digunakan oleh World Wide Web. HTTP mendefinisikan bagaimana suatu pesan bisa diformat dan dikirimkan dari server ke client. HTTP juga mengatur aksi-aksi apa saja yang harus dilakukan oleh web server dan juga web browser sebagai respon atas perintah-perintah yang ada pada protokol HTTP ini. Sebagai contoh, ketika Anda mengetikkan suatu alamat atau URL pada internet browser Anda, maka sebenarnya web browser akan mengirimkan perintah HTTP ke web server. Web server kemudian akan menerima perintah ini dan melakukan aktivitas sesuai dengan perintah yang diminta oleh web browser (misalnya akses ke database, file, e-mail dan lain sebagainya). Hasil aktivitas tadi akan dikirimkan kembali ke web browser untuk ditampilkan kepada pengguna. Sewaktu melakukan transfer, dokumen atau data webnya dengan menggunakan format HTML (hypertext transer protokol).. HTML sendiri adalah singkatan dari "hypertext markup language". Disebut dengan markup language karena HTML berfungsi untuk memperindah file tulisan (text) biasa untuk dapat dilihat pada web browser-web browser yang ada.

         F. WORLD WIDE WEB (WWW)
WWW adalah layanan yang paling sering digunakan dan memiliki perkembangan yang sangat cepat karena dengan layanan ini kita bisa menerima informasi dalam berbagai format (multimedia). Untuk mengakses layanan WWW dari sebuah komputer (yang disebut WWW server atau web server) digunakan program web client yang disebut web browser atau browser saja. Jenis-jenis browser yang sering digunakan adalah: Netscape Navigator/Comunicator, Internet Explorer, NCSA Mosaic, Arena, Lynx, dan lain-lain.

Informasi-informasi yang terdapat di WWW dikemas dalam bentuk halaman- halaman web (web page). Sekumpulan halaman web milik seseorang atau suatu perusahaan dikumpulkan dan diletakkan dalam sebuah situs web (web site) sedangkan homepage adalah istilah untuk menyebut halaman pertama yang akan muncul jika sebuah situs web diakses. Setiap halaman dan situs dalam WWW memiliki alamat yang unik dan khas yang disebut sebagai URL (Universal Resource Locator). URL mempunyai bentuk dasar:

protocol://hostname/[path/[filename]]

Di layer teratas protokol TCP/IP terdapat beberapa protokol untuk berbagai jenis layanan yang sering digunakan orang. Protokol-protokol tersebut antara lain adalah:
1.       SMTP (Simple Mail Transport Protocol) untuk layanan E-Mail (Electronic Mail)
2.       FTP (File Transfer Protocol)
3.       IRC (Internet Relay Chat)
4.        Telnet, dan yang paling terkenal:
HTTP (HyperText Transfer Protocol) untuk layanan World Wide Web (WWW).

         G. Publikasi
Keberadaan Situs Tidak Ada Gunanya Dibangun Tanpa Dikunjungi Atau Dikenal Oleh Masyarakat Atau Pengunjung Internet. Karena Efektif Tidaknya Situs Sangat Tergantung Dari Besarnya Pengunjung Dan Komentar Yang Masuk. Untuk Mengenalkan Situs Kepada Masyarakat Memerlukan Apa Yang Disebut Publikasi Atau Promosi. Publikasi Situs Di Masyarakat Dapat Dilakukan Dengan Berbagai Cara Seperti Dengan Pamlet-Pamlet, Selebaran, Baliho Dan Lain Sebagainya Tapi Cara Ini Bisa Dikatakan Masih Kurang Efektif Dan Sangat Terbatas. Cara Yang Biasanya Dilakukan Dan Paling Efektif Dengan Tak Terbatas Ruang Atau Waktu Adalah Publikasi Langsung Di Internet Melalui Search Engine-Search Engine (Mesin Pencari, Spt : Yahoo, Google, Search Indonesia, Dsb)

Cara Publikasi Di Search Engine Ada Yang Gratis Dan Ada Pula Yang Membayar. Yang Gratis Biasanya Terbatas Dan Cukup Lama Untuk Bisa Masuk Dan Dikenali Di Search Engine Terkenal Seperti Yahoo Atau Google. Cara Efektif Publikasi Adalah Dengan Membayar, Walaupun Harus Sedikit Mengeluarkan Akan Tetapi Situs Cepat Masuk Ke Search Engine Dan Dikenal Oleh Pengunjung.

         H. Pemeliharaan
Untuk Mendukung Kelanjutan Dari Situs Diperlukan Pemeliharaan Setiap Waktu Sesuai Yang Diinginkan Seperti Penambahan Informasi, Berita, Artikel, Link, Gambar Atau Lain Sebagainya. Tanpa Pemeliharaan Yang Baik Situs Akan Terkesan Membosankan Atau Monoton Juga Akan Segera Ditinggal Pengunjung.

Pemeliharaan Situs Dapat Dilakukan Per Periode Tertentu Seperti Tiap Hari, Tiap Minggu Atau Tiap Bulan Sekali Secara Rutin Atau Secara periodik Saja Tergantung Kebutuhan (Tidak Rutin). Pemeliharaan Rutin Biasanya Dipakai Oleh Situs-Situs Berita, Penyedia Artikel, Organisasi Atau Lembaga Pemerintah. Sedangkan Pemeliharaan Periodik Biasanya Untuk Situs-Situs Pribadi, Penjualan/E-Commerce, Dan Lain Sebagainya.

PERMASALAHAN-PERMASALAHAN DALAM PENGELOLAHAN WEB INSTITUSI
1.       Mendaftarkan Web institusi dengan domain dan atau hosting Gratis-an. Kenapa gratisan jika mampu membayar, secara umum gratisan tidak bisa memberikan jaminan.
2.       Membuat tapi tidak merawat sehingga seolah membiarkan webnya seperti Rumput. Misalkan : ada script web yang error, komentar Spam, hingga tidak tahu kalau website-nya di hack.
3.       Tidak mengenalkan website kepada : Semua staff yang ada, kepada Publik, termasuk tidak “menaruh” alamat web dalam Kop Surat Resmi.
4.       Menggunakan CMS tapi tidak meng Update, membuat web secara umum mudah banyak Open Source CMS yang bisa digunakan. namun jika lupa mengupdate, bisa jadi web anda “tidak aman”
5.       Tidak menyediakan Form kontak atau Form Kontak tidak berfungsi. Form/kontak “wajib” disediakan terutama untuk mendapatkan feedback dari pengunjung web kita. Sebaiknya menggunakan form kontak dan menyiapkan SDM (bisa Humas/Staff PR) yang siap interaksi dengan pengunjung.
6.       Terlalu membiarkan form bebas tanpa Moderasi (Buku Tamu, Komentar, dll). Wesbite Intitusi berbeda dengan blog, pada Blog hal ini umunya tidak bermasalaha asal pemilik rajin melihat dan menyeleksi keomentar yang ada. Banyak dijumpak Buku tamu wesbite penuh dengan : Spam, Iklan, promosi, dll.
7.       Menulis Email kontak di Web secara Full, Hal ini bagus namun dimungkinan mengundang Spam. Sehingga email kita bisa “kebanjiran” sampah email (Spam). Sangat susah jika email kita sudah terkena Spam. Solusi Kontak sebaiknay menggunakan Form kontak.
8.       Menyerahkan semuanya pada seseorang, termasuk pengeloaan domain website. Banyak kasus ketika “pengelola domain” pindah (resign/missing) , Pengaturan Domain tidak serahkan pada pemilik. Atau kasus lain pengelola domain tidak bisa dihubungi lagi.
9.       Punya Domain Website tetapi tidak menggunakan Email dengan Domain Institusi untuk Komunikasi Resmi. Mungkin masih ingat kasus Komis8 at yahoo.comdomain/web yang terlihat lucu dan mengundang pertanyaan Publik. Apakah anda akan mengikuti jejak Meraka?
10.   Di beri masukan tetapi tidak merespon. Seorang pengelola Web/domain sewajarnya juga bertanggung jawab memonitor dan mengelola Sub Domain dibawahnya (jika ada). Jika punya web umumnya kontak masuk akan melalui Email, sehingga cek Isi web dan email seharusnya menjadi pekerjaan rutin.